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LElTER TO THE EDITOR 

On the stability of the replica symmetric theory of the 
matching problem: the longitudinal sector 
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t Service de Physique ThCorique, CEN Saclay, 91 191 Gif-sur-Yvette, Cedex, France 
$ Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford 
OX1 3NP, UK 

Received 5 May 1987 

Abstract. A replica symmetric theory of the matching problem was given by Orland and 
by Mezard and Parisi. Here we investigate the stability of this solution. In the zero- 
temperature limit we find that the longitudinal spectrum is continuous and lies in the 
interval 0 < A < 2. We conclude that the solution of MCzard and Parisi is stable to longi- 
tudinal fluctuations. We give the explicit form of the longitudinal eigenvectors. The method 
used lends itself to dealing with replica symmetry broken solutions where necessary. 

In recent years there has been a great deal of interest in the application of statistical 
mechanics to optimisation problems (see, for example, [l]). The replica method [2] 
has been applied to a number of important optimisation problems [3-51. Except in 
particularly simple cases [6], work has been restricted to the replica symmetric ansatz. 
This is rather unfortunate since it has often been suggested that for hard (NP-complete) 
optimisation problems replica symmetry must be broken. In this letter we consider 
the matching problem [7]. That is: given 2 N  points, how can one pair them in order 
to minimise the sum of the distances between each pair? This problem is polynomially 
bounded [7]. The replica method has been applied to this problem by Orland [4] and 
Mtzard and Parisi [3]. Here we investigate the stability of the replica symmetric ansatz 
used by these authors. 

As our starting point we shall use the expression for z" derived by Orland [4] and 
Mizard and Parisi [3]: 

where 

and 
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Here the Q,,...,, are (2" - 1)-order parameters generalising the Edwards-Anderson [2] 
parameters Q.,,2. Following [8] we introduce a new set of order parameters defined by 

where U, = *l ,  a = 1,2, . . . , n. There is a distinct X ( { u , } )  for each configuration {U,} 
of Ising spins. This gives 2" parameters and therefore we include the constraint 

Tr X({u,}) = 0 (6) 

to reduce this to (2" - 1) independent parameters. This generalised order parameter 
(with 2" - 1 components) is particularly suited to represent any system described by 
the qal...ap, with or without replica symmetry breaking. 

In terms of the X parameters, equations (2) and (3) become 

Tr X(7,) Tr X ( u , ) K  -pf" = -2-(2"+1) A -  

Ta 0. 

+ y  TrX(u,)  -2 ' - "TrX(u , )+2logz  )* ma 

where 

and 

The constraint ( 6 )  is imposed by taking y +  -a. 
The first derivative of (7) with respect to X ( { v a } )  gives the equation of motion 

0=-2-"TrX(7,)K . . .  TrX(u:) . . .  X ( u h )  
To 

where we have made use of the constraint (6). 

total spin 
We now make the replica symmetric ansatz that X ( { u , } )  depends only on the 

fl 

(11) 6 =  U, 
, = I  

of the spin configuration {U,}. In our previous work [ 8 ,9 ]  we have shown that in the 
n + O  limit 6 can be analytically continued to the pure imaginary axis. Using the 
methods discussed there, we have shown that the function X(6) is related to the 
function 6 ( x )  of MCzard and Parisi [3] by 
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Likewise, an inverse formula expressing X(s)  in terms of 6 ( x )  may also be derived. 
Substituting (12) in (10) we find in the n + 0 limit the replica symmetric equation of 
~ 3 ~ 4 1 :  

m 

&XI =+ dy exp(-&y))B,(b(x+y)) ( 1 3 ~ )  
P -m 

where 

In the limit /3 +CO and with r = 0, equation ( 1 3 4  has the solution [3] 

&x) = In(1 +eZX). ( 1 3 ~ )  

In the following we consider the stability of this solution to both longitudinal and 
transverse fluctuations. 

Taking the derivative of equation (7) with respect to X ( { a , } )  and X({T,}) we 
obtain the stability matrix 

M ( { a a l ,  { T a l )  = -4--"K (; ,T*) +2Y 

m 
+ Z-12(1-2n) (l / t!2" ')Tr . . .  TrX(aA) . . .  X ( V ; )  

I =o 4 U'? 

s = l  s=1  

"7 UTII 

The eigenvalue equation is 

Tr u ( { . r , } ) M ( { a a J ,  { T a l )  = - A u ( { a , } )  (15) 
re 

where the stability condition is that all eigenvalues should be positive. 
There always exists the trivial eigenvector where u({aa}) is independent of {aa}. 

The eigenvalue corresponding to this constant eigenvector is -27 and so the system 
is always stable to this type of fluctuation. The condition that all remaining eigenvectors 
are orthogonal to this is 

Tr u ( { a a } )  = 0. (16) 
-0 

As discussed in [8], when X ( { a a } )  is replica symmetric, the space of eigenvectors is 
completely spanned by vectors of the form 

u ( { a a l ) = u ( 6 , ; a a F a ) .  (17) 

Here { p a }  is a configuration of Ising spins that labels the vector. Vectors with the 
same /.2. form degenerate subspaces. To span the space it is sufficient to consider vectors 
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with C; = n, n - 2, n -4, . . . , 0. In this letter we conside: only the ii = n subspace. 
Vectors with C; = n are functions only of 3, and so correspond to longitudinal fluctu- 
ations. The study of transverse components is deferred to a later publication. 

In the n + 0 limit the longitudinal eigenvector equation becomes 

J -m J -02 J -m 

where the vectors have been transformed in a similar way to X ( 3 )  in equation (12). 
Note that in the special case of the longitudinal fluctuations, the eigenvalue equation 
(18) can also be obtained by considering fluctuations in Qa,...., of the form SQp. The 
relation between SQp and u(x) is then 

The real importance of the method given here is that it can also deal with transverse 
fluctuations. 

For r = 0, and in the limit + CO, equation (18) becomes 
m 

4 x ) +  I dy(1 -tanh Y ) U ( Y )  = A dy ~ ( y )  (20) 
--x 

where we have used the solution, equation (13c), of [3]. The most general solution 
of (20) is 

{(A - 1) exp[(A + l )x]  + A exp[(A - 1)x] + exp[ (1 - A )X I }  u(x) =- (21) 
C 

cosh x 

with the boundary condition 

u(-CO)=O (22) 

and where C is an arbitrary constant. The boundary condition (22) is equivalent to 
the condition (16) of orthogonality to the constant eigenvector. This cdndition is 
satisfied by a continuous spectrum of eigenvalues in the interval 

O<A<2. (23) 

Therefore the longitudinal part of the spectrum is positive definite, and so the solution 
(14) of Mdzard and Parisi [3] is stable to longitudinal fluctuations. 

The eigenvalue equation for transverse fluctuations may be obtained from equations 
(15) and (17), using similar methods. The transverse vectors are functions of two 
variables, and so the resulting equation is much harder to solve. We leave this problem 
to a future publication. 

In conclusion we have shown that the replica symmetric solution of the matching 
problem given by Mdzard and Parisi [3] is stable to longitudinal fluctuations. 

PM would like to thank R Heimann and R Dewar for useful discussions. 

Nore added. After the completion of this work we received a preprint from MCzard and Parisi [ 101 in which 
they discuss the same problem. They agree with our conclusion that the solution of [3] is stable to longitudinal 
fluctuations. They also give a complete and detailed analysis of the transverse fluctuations. Our results for 
the longitudinal case have the advantage of being explicit analytic forms at T=O,  rather than numerical 
solutions at low temperature. 
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